
Searching and Sorting
CS10003 PROGRAMMING AND DATA STRUCTURES

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2

Search

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3

Searching
Check if a given element (called key) occurs in the array.

• Example: array of student records; rollno can be the key.

Two methods to be discussed:

• If the array elements are unsorted.
• Linear search

• If the array elements are sorted.
• Binary search

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4

Basic Concept of Linear Search
Basic idea:

• Start at the beginning of the array.
• Inspect elements one by one to see if it matches the key.

Time complexity:

• A measure of how long an algorithm runs before terminating.
• If there are n elements in the array:

• Best case:
match found in first element (1 search operation)

• Worst case:
no match found, or match found in the last element (n search operations)

• Average case: (n + 1) / 2 search operations

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 5

Linear Search
Function linear_search returns the array index where a match is found.
It returns -1 if there is no match.

int linear_search (int a[], int size, int key)
{

int pos = 0;
while ((pos < size) && (a[pos] != key)) pos++;
if (pos < size)

return pos; /* Return the position of match */
return -1; /* No match found */

}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 6

Binary Search

Basic Concept

Binary search is applicable if the array is sorted.

BASIC IDEA

• Look for the target in the middle.
• If you don’t find it, you can ignore half of the array, and repeat the process with the other half.

In every step, we reduce the number of elements to search in by half.

7INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

8

The Basic Strategy

What do we want?

• Find split between values larger and smaller than key:

• Situation while searching:
• Initially L and R contains the indices of first and last elements.

• Look at the element at index [(L+R)/2].
• Move L or R to the middle depending on the outcome of test.

0

<=key >keyx:

n-1

L R

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 9

Binary Search

/* If key appears in x[0..size-1], return its location, pos such that x[pos]==key.
If not found, return -1 */

int bin_search (int x[], int size, int key)
{

int L, R, mid;
_________________ ;
while (____________)
{

__________________;
}
_________________ ;

}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 10

The basic search iteration
int bin_search (int x[], int size, int key)
{

int L, R, mid;
_________________;
while (____________)
{

mid = (L + R) / 2;
if (x[mid] <= key) L = mid;
else R = mid;

}
_________________ ;

}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 11

Loop termination criterion
int bin_search (int x[], int size, int key)
{

int L, R, mid;
_________________;
while (L+1 != R)
{

mid = (L + R) / 2;
if (x[mid] <= key) L = mid;
else R = mid;

}
_________________ ;

}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 12

Initialization and Return Value

int bin_search (int x[], int size, int key)
{

int L, R, mid;
L = −1; R = size;
while (L+1 != R)
{

mid = (L + R) / 2;
if (x[mid] <= key) L = mid;
else R = mid;

}
if (L >= 0 && x[L] == key) return L;
else return −1;

}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 13

Binary Search Examples

-17 -5 3 6 12 21 45 63 50

Trace :

bin_search (x, 9, 3);

bin_search (x, 9, 145);

bin_search (x, 9, 45);

Sorted array

L= –1; R=9; x[4]=12;
L= –1; R=4; x[1]= –5;
L= 1; R=4; x[2]=3;
L=2; R=4; x[3]=6;
L=2; R=3; return L;

We may modify the algorithm by checking equality with x[mid].

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 14

Is it worth the trouble ?

Suppose that the array x has 1000 elements.

Ordinary search

– If key is a member of x, it would require 500 comparisons on the average.

Binary search

• after 1st compare, left with 500 elements.
• after 2nd compare, left with 250 elements.
• After at most 10 steps, you are done.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 15

Time Complexity
If there are n elements in the array.

• Number of iterations required: log2n

For n = 64 (say).

• Initially, list size = 64.
• After first compare, list size = 32.
• After second compare, list size = 16.
• After third compare, list size = 8.
• …….
• After sixth compare, list size = 1.

log264 = 6
log21024 = 10

2k= n, where k is the
number of steps.

Are exactly log2n steps required for all cases?

Trace of binsearch(x,9,12):
L= –1; R=9; x[4]=12;
L= 4; R=9; x[6]= 45;
L= 4; R=6; x[5]=21;
L=4; R=5; return L;

We know in first iteration that x[4] = 12. Why not stop then?

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 16

-17 -5 3 6 12 21 45 63 50

Are exactly log2n steps required for all cases?

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 17

int bin_search_1 (int x[], int size, int key)
{

int L, R, mid;
L = 0; R = size-1;
while (L <= R)
{

mid = (L + R) / 2;
if (x[mid] == key) return mid;
if (x[mid] < key) L = mid+1;
else R = mid-1;

}
return -1;

}

int bin_search (int x[], int size, int key)
{

int L, R, mid;
L = −1; R = size;
while (L+1 != R)
{

mid = (L + R) / 2;
if (x[mid] <= key) L = mid;
else R = mid;

}
if (L >= 0 && x[L] == key) return L;
else return −1;

}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 18

Sorting

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 19

The Basic Problem
Given an array: x[0], x[1], ... , x[size-1] reorder entries so that

x[0] <= x[1] <= . . . <= x[size-1]

• List is in non-decreasing order.

We can also sort a list of elements in non-increasing order.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 20

Example

Original list:

10, 30, 20, 80, 70, 10, 60, 40, 70

Sorted in non-decreasing (ascending) order:

10, 10, 20, 30, 40, 60, 70, 70, 80

Sorted in non-increasing (descending) order:

80, 70, 70, 60, 40, 30, 20, 10, 10

BUBBLESORT

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 21

We had studied this earlier. Repeatedly scan the array from left to right and exchange successive elements
if they are out of order.

void bubbleSort(int arr[], int n)
{

int i, j;

for (i = 0; i < n – 1; i++)
for (j = 0; j < n – i – 1; j++) // Last i elements are already in place

if (arr[j] > arr[j + 1]) { temp = arr[j]; arr[j] = arr[j+1]; arr[j+1] = temp; }
}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 22

SELECTION SORT
General situation :

remainder, unsortedsmallest elements, sorted
0 size-1k

Step :
• Find smallest element, mval, in x[k..size-1]
• Swap smallest element with x[k], then increase k.

x:

0 k size-1mval

swap

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 23

Subproblem

/* Find index of smallest element in x[k..size-1] */

int min_loc (int x[], int k, int size)
{

int j, pos;

pos = k;
for (j=k+1; j<size; j++)

if (x[j] < x[pos]) pos = j;
return pos;

}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 24

Selection Sort Function

/* Sort x[0..size-1] in non-decreasing order */

int sel_sort (int x[], int size)
{

int k, m;

for (k=0; k<size-1; k++)
{

m = min_loc (x, k, size);
temp = a[k]; a[k] = a[m]; a[m] = temp;

}
}

/* Find index of smallest element in x[k..size-1] */

int min_loc (int x[], int k, int size)
{

int j, pos;

pos = k;
for (j=k+1; j<size; j++)

if (x[j] < x[pos]) pos = j;
return pos;

}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 25

Example

-17 12 -5 6 142 21 3 45x:

3 12 -5 6 142 21 -17 45x:

-17 -5 12 6 142 21 3 45x:

-17 -5 3 6 142 21 12 45x:

-17 -5 3 6 142 21 12 45x:

-17 -5 3 6 12 21 142 45x:

-17 -5 3 6 12 21 45 142x:

-17 -5 3 6 12 21 142 45x:

-17 -5 3 6 12 21 45 142x:

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 26

Analysis
How many steps are needed to sort n items ?

• Total number of steps proportional to n2.

• What is the number of comparisons?

• Worst Case? Best Case? Average Case?

(n-1)+(n-2)+……+1= n(n-1)/2

Of the order of n2

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 27

>k

0 size-1

<k
i

INSERTION SORT

General situation :

remainder, unsortedsorted
0 size-1i

x:

i

j

Compare and
shift till item = x[i]
is larger.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 28

void insert_sort (int x[], int size)
{

int i, j, item;

for (i=1; i<size; i++)
{

item = x[i] ;
for (j=i-1; (j >= 0) && (x[j] > item); j - -) x[j+1] = x[j];
x[j+1] = item ;

}
}

Insertion Sort

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 29

Time Complexity

Number of comparisons and shifting:

• Worst case?
1 + 2 + 3 + …… + (n-1) = n(n-1)/2

• Best case?
1 + 1 + …… to (n-1) terms = (n-1)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 30

Some Efficient Sorting Methods

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 31

Two of the most popular sorting algorithms are based on divide-and-conquer approach.

• Quick sort
• Merge sort

Basic idea (divide-and-conquer method):
sort (list)
{

if the list has length greater than 1
{

Partition the list into lowlist and highlist;
sort (lowlist);
sort (highlist);
combine (lowlist, highlist);

}
}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 32

QUICKSORT

At every step, we select a pivot element in the list (usually the first element).

• We put the pivot element in the final position of the sorted list.
• All the elements less than or equal to the pivot element are to the left.
• All the elements greater than the pivot element are to the right.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 33

Partitioning

0 size-1
x:

pivot

Values smaller Values greater

Perform
partitioning

Perform
partitioning

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 35

Preparation

void print (int x[], int low, int high)
{

int i;
for(i=low; i<=high; i++) printf(" %d ", x[i]);
printf("\n");

}

void swap (int *a, int *b)
{

int tmp=*a; *a=*b; *b=tmp;
}

Quicksort

void partition (int x[], int low, int high)
{

int i = low+1, j = high;
int pivot = x[low];

if (low >= high) return;
while (i<j) {

while ((x[i]<=pivot) && (i<high)) i++;
while ((x[j]>pivot) && (j>low)) j--;
if (i<j) swap (&x[i], &x[j]);

}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 36

if (j==high) {
swap (&x[j], &x[low]);
partition (x, low, high-1);

}
else if (i==low+1)

partition (x, low+1, high);
else {

swap (&x[j], &x[low]);
partition (x, low, j-1);
partition (x, j+1, high);

}
}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 37

Time Complexity

Worst case:

n2 ==> list is already sorted

Average case:

n log2n

Statistically, quick sort has been found to be one of the fastest algorithms.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 38

Merge Sort

Input Array

Part-I Part-II

Part-I Part-IIPart-I Part-II

SplitMerge
Sorted Arrays

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 39

Merging two sorted arrays

0
Sorted Array Sorted Array

0m n

Array a Array b

Merged sorted array

0 m+n-1

Array c

pa pb

Move and copy elements pointed by pa if its value is smaller than the element pointed by pb in (m+n-1)
operations; otherwise, copy elements pointed by pb .

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 40

Example

Initial array A contains 14 elements:

• 66, 33, 40, 22, 55, 88, 60, 11, 80, 20, 50, 44, 77, 30
Pass 1 :: Merge each pair of elements

• (33, 66) (22, 40) (55, 88) (11, 60) (20, 80) (44, 50) (30, 70)
Pass 2 :: Merge each pair of pairs

• (22, 33, 40, 66) (11, 55, 60, 88) (20, 44, 50, 80) (30, 77)
Pass 3 :: Merge each pair of sorted quadruplets

• (11, 22, 33, 40, 55, 60, 66, 88) (20, 30, 44, 50, 77, 80)
Pass 4 :: Merge the two sorted subarrays to get the final list

• (11, 20, 22, 30, 33, 40, 44, 50, 55, 60, 66, 77, 80, 88)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 41

void merge_sort (int *a, int n)
{

int i, j, k, m;
int *b, *c;

if (n>1) {
k = n/2; m = n−k;
b = (int *) calloc(k,sizeof(int));
c = (int *) calloc(m,sizeof(int));
for (i=0; i<k; i++) b[i] = a[i];
for (j=k; j<n; j++) c[j− i] = a[j];

merge_sort (b, k);
merge_sort (c, m);
merge (b, c, a, k, m);
free(b); free(c);

}
}

void merge (int *a, int *b, int *c, int m, int n)
{

int i=0, j=0, k=0, p;

do {
if (a[i] < b[j]) { c[k]=a[i]; i++; }
else { c[k]=b[j]; j++; }
k++;

} while ((i<m) && (j<n));

if (i == m) {
for (p=j; p<n; p++) { c[k]=b[p]; k++; }

}
else {

for (p=i; p<m; p++) { c[k]=a[p]; k++; }
}

}

Practice Problems

1. Write a recursive function for binary search.

2. Write iterative version of merge sort.

3. Write merge sort without using additional storage (i.e., extra arrays).

4. You are given a sorted array with entries rotated clockwise by k positions. That is, if the sorted order is a_0,
a_1, … , a_{n-1} then the given array to you has the form a_k, a_{k+1}, … , a_{n-1}, a_0, a_1, … , a_{k-1}. Write
a variant of binary search on such an array. Assume that k is known.

5. In the previous problem, suppose that k is not given. Write a function that takes the array as input and finds k.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 42

	Searching and Sorting
	Slide Number 2
	Searching
	Basic Concept of Linear Search
	Linear Search
	Slide Number 6
	Basic Concept
	The Basic Strategy
	Binary Search
	The basic search iteration
	Loop termination criterion
	Initialization and Return Value
	Binary Search Examples
	Is it worth the trouble ?
	Time Complexity
	Are exactly log2n steps required for all cases?
	Are exactly log2n steps required for all cases?
	Slide Number 18
	The Basic Problem
	Example
	BUBBLESORT
	SELECTION SORT
	Subproblem
	Selection Sort Function
	Example
	Analysis
	INSERTION SORT
	Insertion Sort
	Time Complexity
	Slide Number 30
	
	QUICKSORT
	Partitioning
	Preparation
	Quicksort
	Time Complexity
	Merge Sort
	Merging two sorted arrays
	Example
	Slide Number 41
	Practice Problems

